p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.377C23, C23.561C24, C22.3352+ 1+4, (C22×C4)⋊39D4, C23⋊2D4⋊30C2, C23.200(C2×D4), C23.10D4⋊66C2, C23.11D4⋊71C2, C2.33(C23⋊3D4), (C22×C4).166C23, (C23×C4).437C22, (C2×C42).625C22, C22.373(C22×D4), C24.3C22⋊69C2, (C22×D4).209C22, C23.81C23⋊72C2, C24.C22⋊111C2, C2.49(C22.29C24), C2.52(C22.32C24), C2.C42.275C22, C2.50(C22.26C24), C2.36(C22.34C24), (C2×C4⋊D4)⋊26C2, (C4×C22⋊C4)⋊98C2, (C2×C4).683(C2×D4), (C2×C4).181(C4○D4), (C2×C4⋊C4).384C22, C22.428(C2×C4○D4), (C2×C22.D4)⋊27C2, (C2×C22⋊C4).520C22, SmallGroup(128,1393)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.377C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=d, g2=c, eae-1=ab=ba, faf=ac=ca, ad=da, ag=ga, bc=cb, bd=db, be=eb, gfg-1=bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef=de=ed, df=fd, dg=gd, eg=ge >
Subgroups: 692 in 299 conjugacy classes, 96 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C22.D4, C23×C4, C22×D4, C22×D4, C4×C22⋊C4, C24.C22, C24.3C22, C23⋊2D4, C23⋊2D4, C23.10D4, C23.10D4, C23.11D4, C23.81C23, C2×C4⋊D4, C2×C22.D4, C24.377C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C22.26C24, C23⋊3D4, C22.29C24, C22.32C24, C22.34C24, C24.377C23
(1 55)(2 52)(3 53)(4 50)(5 36)(6 44)(7 34)(8 42)(9 45)(10 59)(11 47)(12 57)(13 54)(14 51)(15 56)(16 49)(17 39)(18 29)(19 37)(20 31)(21 33)(22 41)(23 35)(24 43)(25 48)(26 58)(27 46)(28 60)(30 62)(32 64)(38 63)(40 61)
(1 14)(2 15)(3 16)(4 13)(5 24)(6 21)(7 22)(8 23)(9 26)(10 27)(11 28)(12 25)(17 64)(18 61)(19 62)(20 63)(29 40)(30 37)(31 38)(32 39)(33 44)(34 41)(35 42)(36 43)(45 58)(46 59)(47 60)(48 57)(49 53)(50 54)(51 55)(52 56)
(1 25)(2 26)(3 27)(4 28)(5 37)(6 38)(7 39)(8 40)(9 15)(10 16)(11 13)(12 14)(17 34)(18 35)(19 36)(20 33)(21 31)(22 32)(23 29)(24 30)(41 64)(42 61)(43 62)(44 63)(45 56)(46 53)(47 54)(48 55)(49 59)(50 60)(51 57)(52 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 2)(3 4)(5 23)(6 22)(7 21)(8 24)(9 12)(10 11)(13 16)(14 15)(17 33)(18 36)(19 35)(20 34)(25 26)(27 28)(29 37)(30 40)(31 39)(32 38)(41 63)(42 62)(43 61)(44 64)(45 51)(46 50)(47 49)(48 52)(53 60)(54 59)(55 58)(56 57)
(1 40 25 8)(2 37 26 5)(3 38 27 6)(4 39 28 7)(9 24 15 30)(10 21 16 31)(11 22 13 32)(12 23 14 29)(17 60 34 50)(18 57 35 51)(19 58 36 52)(20 59 33 49)(41 54 64 47)(42 55 61 48)(43 56 62 45)(44 53 63 46)
G:=sub<Sym(64)| (1,55)(2,52)(3,53)(4,50)(5,36)(6,44)(7,34)(8,42)(9,45)(10,59)(11,47)(12,57)(13,54)(14,51)(15,56)(16,49)(17,39)(18,29)(19,37)(20,31)(21,33)(22,41)(23,35)(24,43)(25,48)(26,58)(27,46)(28,60)(30,62)(32,64)(38,63)(40,61), (1,14)(2,15)(3,16)(4,13)(5,24)(6,21)(7,22)(8,23)(9,26)(10,27)(11,28)(12,25)(17,64)(18,61)(19,62)(20,63)(29,40)(30,37)(31,38)(32,39)(33,44)(34,41)(35,42)(36,43)(45,58)(46,59)(47,60)(48,57)(49,53)(50,54)(51,55)(52,56), (1,25)(2,26)(3,27)(4,28)(5,37)(6,38)(7,39)(8,40)(9,15)(10,16)(11,13)(12,14)(17,34)(18,35)(19,36)(20,33)(21,31)(22,32)(23,29)(24,30)(41,64)(42,61)(43,62)(44,63)(45,56)(46,53)(47,54)(48,55)(49,59)(50,60)(51,57)(52,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,2)(3,4)(5,23)(6,22)(7,21)(8,24)(9,12)(10,11)(13,16)(14,15)(17,33)(18,36)(19,35)(20,34)(25,26)(27,28)(29,37)(30,40)(31,39)(32,38)(41,63)(42,62)(43,61)(44,64)(45,51)(46,50)(47,49)(48,52)(53,60)(54,59)(55,58)(56,57), (1,40,25,8)(2,37,26,5)(3,38,27,6)(4,39,28,7)(9,24,15,30)(10,21,16,31)(11,22,13,32)(12,23,14,29)(17,60,34,50)(18,57,35,51)(19,58,36,52)(20,59,33,49)(41,54,64,47)(42,55,61,48)(43,56,62,45)(44,53,63,46)>;
G:=Group( (1,55)(2,52)(3,53)(4,50)(5,36)(6,44)(7,34)(8,42)(9,45)(10,59)(11,47)(12,57)(13,54)(14,51)(15,56)(16,49)(17,39)(18,29)(19,37)(20,31)(21,33)(22,41)(23,35)(24,43)(25,48)(26,58)(27,46)(28,60)(30,62)(32,64)(38,63)(40,61), (1,14)(2,15)(3,16)(4,13)(5,24)(6,21)(7,22)(8,23)(9,26)(10,27)(11,28)(12,25)(17,64)(18,61)(19,62)(20,63)(29,40)(30,37)(31,38)(32,39)(33,44)(34,41)(35,42)(36,43)(45,58)(46,59)(47,60)(48,57)(49,53)(50,54)(51,55)(52,56), (1,25)(2,26)(3,27)(4,28)(5,37)(6,38)(7,39)(8,40)(9,15)(10,16)(11,13)(12,14)(17,34)(18,35)(19,36)(20,33)(21,31)(22,32)(23,29)(24,30)(41,64)(42,61)(43,62)(44,63)(45,56)(46,53)(47,54)(48,55)(49,59)(50,60)(51,57)(52,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,2)(3,4)(5,23)(6,22)(7,21)(8,24)(9,12)(10,11)(13,16)(14,15)(17,33)(18,36)(19,35)(20,34)(25,26)(27,28)(29,37)(30,40)(31,39)(32,38)(41,63)(42,62)(43,61)(44,64)(45,51)(46,50)(47,49)(48,52)(53,60)(54,59)(55,58)(56,57), (1,40,25,8)(2,37,26,5)(3,38,27,6)(4,39,28,7)(9,24,15,30)(10,21,16,31)(11,22,13,32)(12,23,14,29)(17,60,34,50)(18,57,35,51)(19,58,36,52)(20,59,33,49)(41,54,64,47)(42,55,61,48)(43,56,62,45)(44,53,63,46) );
G=PermutationGroup([[(1,55),(2,52),(3,53),(4,50),(5,36),(6,44),(7,34),(8,42),(9,45),(10,59),(11,47),(12,57),(13,54),(14,51),(15,56),(16,49),(17,39),(18,29),(19,37),(20,31),(21,33),(22,41),(23,35),(24,43),(25,48),(26,58),(27,46),(28,60),(30,62),(32,64),(38,63),(40,61)], [(1,14),(2,15),(3,16),(4,13),(5,24),(6,21),(7,22),(8,23),(9,26),(10,27),(11,28),(12,25),(17,64),(18,61),(19,62),(20,63),(29,40),(30,37),(31,38),(32,39),(33,44),(34,41),(35,42),(36,43),(45,58),(46,59),(47,60),(48,57),(49,53),(50,54),(51,55),(52,56)], [(1,25),(2,26),(3,27),(4,28),(5,37),(6,38),(7,39),(8,40),(9,15),(10,16),(11,13),(12,14),(17,34),(18,35),(19,36),(20,33),(21,31),(22,32),(23,29),(24,30),(41,64),(42,61),(43,62),(44,63),(45,56),(46,53),(47,54),(48,55),(49,59),(50,60),(51,57),(52,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,2),(3,4),(5,23),(6,22),(7,21),(8,24),(9,12),(10,11),(13,16),(14,15),(17,33),(18,36),(19,35),(20,34),(25,26),(27,28),(29,37),(30,40),(31,39),(32,38),(41,63),(42,62),(43,61),(44,64),(45,51),(46,50),(47,49),(48,52),(53,60),(54,59),(55,58),(56,57)], [(1,40,25,8),(2,37,26,5),(3,38,27,6),(4,39,28,7),(9,24,15,30),(10,21,16,31),(11,22,13,32),(12,23,14,29),(17,60,34,50),(18,57,35,51),(19,58,36,52),(20,59,33,49),(41,54,64,47),(42,55,61,48),(43,56,62,45),(44,53,63,46)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4S |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C24.377C23 | C4×C22⋊C4 | C24.C22 | C24.3C22 | C23⋊2D4 | C23.10D4 | C23.11D4 | C23.81C23 | C2×C4⋊D4 | C2×C22.D4 | C22×C4 | C2×C4 | C22 |
# reps | 1 | 1 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 4 | 8 | 4 |
Matrix representation of C24.377C23 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,4,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,3] >;
C24.377C23 in GAP, Magma, Sage, TeX
C_2^4._{377}C_2^3
% in TeX
G:=Group("C2^4.377C2^3");
// GroupNames label
G:=SmallGroup(128,1393);
// by ID
G=gap.SmallGroup(128,1393);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,456,758,723,185,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=d,g^2=c,e*a*e^-1=a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f=d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e>;
// generators/relations